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Abstract-Surface tension-driven convection and buoyancy-driven convection in a bounded cylindrical 
geometry with a free surface are studied for a range of aspect ratios and Nusseh numbers. Linear theory and 
some aspects of a nonlinear analysis are utilized to determine the critical Marangoni and Rayleigh numbers, 
the structure of the convective motion, the direction of flow, and the nature of the bifurcation branching. The 
analysis is based on a somewhat different method for treating free convection problems, the use of Green’s 

functions to reduce the problem to the solution of an integral equation. 

NOMENCLATURE 

coefficient in stream function expansion ; 
coefficient matrix in equation (53); 
heat transfer enhancement ; 
coefficient in stream function expansion ; 
coefficient in stream function expansion ; 
defined by equation (27); 
defined by equations (39)-(42); 
Green’s function ; 

magnitude of acceleration of gravity; 
defined by equation (26); 
heat transfer coefficient at free surface; 
modified Bessel function of first kind of 
order n; 
Bessel function of first kind of order n ; 
thermal conductivity of liquid; 
height of liquid ; 

Marangoni number = 

(Ma),, (Ma),, coefficients in perturbation series for 
Ma; 

(Malo, defined by equation (94); 

Nu, Nusselt number = hL/k; 

Nlll, defined by equation (28); 

Pm* defined by equation (24); 

R, radius of cylinder ; 

Rayleigh number = L3 a(? - T,)&K; 

t&t,. @a),, (R a ) 2, coefficients in perturbation 
series for Ra ; 

(Rah defined by equation (95); 

r, radial distance/R; 

T*, temperature; 

T, T* - T/T, - T; 

T,, temperature of gas; 

T0 conduction temperature distribution; 

T, temperature at bottom surface of 
cylinder ; 

T Ill, defined by equation (19); 

T ltlO9 defined by equation (SO); 
T ml9 defined by equation (51); 

T,“,, eigenfunctions of linear operator ; 
t, (time) K/R’; 

u, (axial velocity) L/K; 

V, (radial velocity) L/K ; 

Y IFSI) defined by equations (29) and (30); 

r, axial distance/R. 

Greek symbols 
thermal coefficient of expansion; 
roots of equation (20); 

LIR ; 
Dirac delta function; 
perturbation parameter ; 
dimensionless deviation temperature; 
zero-and first-order terms of pertur- 
bation series for 0 ; 
thermal diffusivity of liquid ; 
eigenvalues of linear operator ; 
viscosity of liquid; 
kinematic viscosity of liquid ; 
surface tension ; 
dimensionless stream function; 
$ for & and Ma = 1 or Ra = 1; 
+fortI,andMa= lorRa= 1; 
dimensionless vorticity. 

INTRODUCTION 

A LARGE number of theoretical and experimental 
investigations have been concerned with the study of 
thermal convection in heated horizontal fluid layers. 
Comprehensive surveys of past work have been given 
by Chandrasekhar [I], Koschmieder [2], Palm [3] 
and Rogers [4]. Most of the early theoretical studies 
dealt with the linear theory of fluid layers of infinite 
horizontal extent. Rayleigh [S], Jeffreys [6-81, Low 
[9], Pellew and Southwell [lo], and Reid and Harris 
[11] made important contributions to the linear 
theory of buoyancy-driven convection, whereas Pear- 
son [12], Striven and Sternling [13], Nield [14, 151, 
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FIG. 1. Schematic of physical system 

Smith [16], Berg and Acrivos [17] and Zeren and 
Reynolds [ 181 considered linearized cellular con- 
vection for which surface tension gradients were at 
least partially responsible for the fluid motion. The 
nonlinear theory of cellular convection in infinite 
layers has also received considerable attention. The 
papers of Malkus and Veronis [19], Schliiter, Lortz 
and Busse [20], Scanlon and Segel [21], Joseph and 
Shir [22], and Kraska and Sani [23] are representative 
of the type of work done in this area. 

Unfortunately, the results from the convective 
theory of infinite layers are not completely satisfactory 
from several points of view. First, the eigenvalue 
problem in infinite layers can lead to eigenvalues 
which have an infinite multiplicity. Hence, there can 
exist an infinite number of possible flow patterns for 
the linear solution associated with each eigenvalue, 
and this behavior persists for finite amplitude sol- 
utions to the equations of change [ 191. Consequently, 
an infinite layer analysis does not yield a definitive 
conclusion as to the pattern of the motion for a 
particular set of conditions. Second, it is not always 
easy to make a connection between experiments and 
the predictions of infinite layer theory. The experimen- 
tahst of course seeks to approximate an infinite layer 
by utilizing a bounded geometry with horizontal 
dimensions which are much larger than the fluid depth. 
However, it may not be possible to effectively eliminate 
all of the effects of the lateral boundaries which of 
course are not considered in the theory for infinite 
layers. In addition, it may not be easy to minimize 
temperature variations over a large surface area. 
Finally, the eigenvalue problem which describes the 
bounded experimental approximation to an infinite 
layer very probably has simple eigenvalues, and the 
distance between successive eigenvalues decreases as 
the size of the domain increases [24]. Thus, although it 
is possible to estimate experimentally the dimension- 
less critical temperature difference at the onset of 
convection, the crowding of the eigenvalues makes it 
difficult to study the characteristics of the supercritical 
convection. This spectral crowding leads to closely 
bunched solution branches for the various eigenvalues, 

and the inevitable thermal fluctuations present in 
physical systems make it quite possible that several 
solution branches may be unknowingly observed in 
the same experiment. 

As a consequence of the above difficulties with the 
infinite layer theory, attention has been focused re- 
cently on the analysis of thermal convection in geomet- 
ries which have at least one bounded horizontal 
dimension. Both linear and nonlinear buoyancy- 
driven convection in domains bounded by rigid walls 
have been investigated [25-411, and a number of 
investigators [24, 27, 33, 42, 431 have considered 
density-driven convection in bounded regions with at 
least one free surface. The free surfaces for this latter set 
of investigations were chosen primarily for mathematic- 
al simplicity, and we believe it is fair to say that none 
of the configurations examined in these papers is 
readily realizable in the laboratory. Furthermore, no 
comprehensive study of surface tension-driven con- 
vection in a bounded region appears to be available at 
this time. 

The principal objective of this investigation is thus 
the analysis of both buoyancy-driven and surface 
tension-driven cellular convection in a bounded, free 
surface configuration which can be readily examined 
experimentally. We consider thermal convection in a 
liquid layer contained in a vertical circular cylinder 
with a single free boundary, the top surface, which is in 
contact with an inviscid gas phase. A second objective 
of this study is the development of a somewhat 
different method for analyzing free convection prob- 
lems. This method involves the use of Green’s 
functions to reduce the problem to the solution of an 
integral equation. 

In this paper, we develop linear, steady solutions of 
this free convection problem for the case when the 
motion is driven solely by surface tension gradients, 
and the same program is carried out for the case when 
only the buoyancy mechanism for convection is oper- 
ative. In a later paper, the theory of differential 
operators is used to investigate the linearized stability 
of these problems, and some aspects of combined 
buoyancy and surface tension mechanisms are exam- 
ined. Furthermore, we later consider steady, nonlinear 
solutions for both buoyancy-and surface tension- 
driven cellular convection. 

FORMULATION OF PROBLEM 

The geometrical configuration considered in this 
study is depicted in Fig. 1. Thermal convection for this 
system is analyzed subject to the following 
assumptions 
(a) the gas phase is inviscid and the liquid phase is a 

one-component Newtonian fluid; 
(b) the surface phase is an ideal surface fluid with 

mechanical properties determined solely by the 
surface tension ; 

(c) all physical properties with the exception of den- 
sity and surface tension are constant; 

(d) there is no mass transfer between the gas and liquid 
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phases ; 
viscous dissipation is negligible; 
the standard Boussinesq approximation is in- 
troduced so that the surface tension and the 
density in the body force term are linear functions 
of temperature; 
the Prandtl number of the liquid is infinite; 
the surface tension is sufficiently high so that 
defo~ation of ibe free surface is negligible, and it 
is possible to assume that the interface is effectively 
flat; 
the velocity and temperature fields are 
axisymmetric. 

Since the first six assumptions are standard and can 
usually be adequately approximated in the laboratory, 
we consider justification of the remaining three assump- 
tions. Experience with natural convection problems 
(for example, see Liang, Vidal and Acrivos [33]) 
indicates that infinite Prandtl number solutions are 
good approximations to the convective motion for 
Prandtl numbers greater than about 5. Many common 
liquids fall in this range, and experiments are fre- 
quently conducted with fluids which have Prandtl 
numbers in the 100-1000 range. The infinite Prandtl 
number assumption serves to linearize the equations of 
motion and allows the development of a solution 
method which involves deriving an integral equation 
for the temperature field. 

The assumption of a flat interface, which is valid in 
the limit of zero crispation number [13], will lead to 
erroneous predictions for very thin layers of very 
viscous fluids. However, there appears to be a large 
class of important convection problems for which the 
approximation of a zero crispation number is ade- 
quate. For example, crispation numbers for the impor- 
tant experiments of Koschmieder [44] and of Hoard, 
Robertson and Acrivos [45} were less than 10m4. In 
addition, Palmer and Berg [46! concluded that defor- 
mability of the free surface played an insignificant role 
in their stability experiments with heated liquid pools. 

The critical assumption is of course that of axisym- 
metric velocity and temperature fields. Ever since the 
classic experimental work of Binard [47], it has been 
assumed that convection in a liquid layer which is 
heated from below and cooled by an air surface wiil lead 
to a pattern of hexagonal cells rather than to an 
axisymmetric circular roll cell pattern. However, sub- 
sequent work has cast some doubt on the general 
validity of this conclusion. The infinite layer stability 
analysis of Schliiter, Lortz and Busse [20] shows that 
two-dimensional rolls are the only stable convective 
pattern for buoyancy-driven convection for fluids with 
temperature independent physical properties. Fur- 
thermore, Hoard, Robertson and Acrivos [45], using a 
fluid with a highly temperature dependent viscosity, 
observed a roll pattern for sufficiently deep fluid layers. 
These investigators argued that surface contamination 
in this experiment made it quite likely that the motion 
was due to buoyancy forces alone. Hence, it is 
reasonable to conclude that axisymmetric patterns are 

important for free surface convection dominated by 
buoyancy effects. On the other hand, the infinite layer 
stability analyses of Scanlon and Segel [21] and 
Kraska and Sani [23] indicate that hexagons are the 
preferred convective state in the vicinity of the critical 
point for cellular motion with surface tension gra- 
dients. Furthermore, Koschmieder [44] and Hoard, 
Robertson and Acrivos [45] observed motion of the 
hexagonal type for sufficiently supercritical convection 
under an air surface under conditions for which surface 
tension effects are important. However, Koschmieder 
also reported a stable ring pattern at a lower tempera- 
ture difference, and Liang, Vidal and Acrivos [33] 
observed stable roll cells for convection with a free 
upper surface. ConsequentIy, the possibility of an 
axisymmetric flow pattern can not be discounted even 
when significant surface tension effects are present. 
Furthermore, it is reasonable to expect that the shape 
of the lateral walls will increasingly influence the 
geometry of the convection cells as the radius to height 
ratio of the container decreases, and a pattern of 
hexagons may well give way to circular roils for 
sufficiently small values of R/L. Indeed, two experi- 
ments of Hoard, Robertson and Acrivos [45] appear 
to support this contention. 

With the introduction of the assumption of axial 
symmetry, it is convenient to cast the equations of 
motion into a stream function-vorticity form. The 
dimensionless vorticity transport equation can be 
written as 

(1) 

and the dimensionless equation for stream function 
takes the form 

(5) 

These equations describe both steady and unsteady 
velocity fields at the infinite Prandtl number limit. The 
boundary conditions for vorticity can be written as 

w=O, r=O, O<z</I (6) 

w=k,fz), r=l, O<z<fi 0) 

w = k,(r), z=O, O<r<l (8) 

w = k&j, z=/?, O<r<l (9) 

where k,(z), k&r) and k,(r) are unknown vorticity 
distributions on the bounding surfaces of the con- 
tainer. The stream function boundary conditions can 
be expressed as follows: 
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II/ = 0, -- = __ r=O, O<z<p 
r ar ar2 ’ (10) 

$ = 0, $J = 0, r=l, O<z<jJ 

$=(),!!Y= _$!g, 
r 62’ 

2=0. O<r<l (12) 

$ = 0, g = 0, z=/?, Ocrel. (13) 

The unsteady energy equation for this problem 
takes the form 

and steady solutions to this equation will be obtained 
subject to the following boundary conditions 

aT 
- = 0, r=O, 0<2</3 
i% 

ST 
- = 0, r=l, O<z<p 
i?r 

(15) 

(16) 

‘T-E(T-l), z=O, O<r<l 
z-p 

(17) 

T = 0, z=jY, O<rcl. (18) 

Clearly the nonlinearity of the problem is concentrated 
in the convective terms of the energy equation. 

Although these equations can of course be used to 
consider convection with combined buoyancy and 
surface tension effects, we shall be primarily interested 
in the two extreme cases: surface tension-driven 
convection in the absence ofbuoyancy (the Marangoni 
problem) and buoyancy-driven convection with no 
surface tension effects (the Rayleigh problem). 

SOLUTION FOR THE STREAM FUNCTION H,(z) = 2F, [(I - $)sinh (amz)] 

Since the boundary conditions for most cehufar 
convection problems preclude the possibility of using a 
strict separation of variables approach, the usual 
practice [28,31,37,38] in solving for the velocity and 
temperature fields in bounded geometries is to choose 
trial functions which satisfy the boundary conditions 
and then to minimize the errors in the bulk equations 
of change in an appropriate manner. We prefer to solve 
for o and j, by using a method [48] which parallels the 
separation of variables approach. Exact solutions are 
obtained to the partial differential equations for w and 
+!I, and the constants in the eigenfunction expansions 
are determined by satisfying the boundary conditions. 
However, since series of nonorthogonal functions are 
involved in this method, it is necessary to solve an 
infinite system of linear algebraic equations to de- 
termine all of these constants. In the usual separation 
of variables technique, simultaneous determination of 
the eigenfunction coefficients is usually avoided owing 
to the orthogonality of the eigenfunctions. 

+ 2E, [Z sinh a,,, (z-j?)] (26) 

N,(z) = I ” Y,(z /t) T,(5) d5 (7% 
0 

ymtzlr) = 
am 

amp3 i 

(z - 8) sinh (a,z) sinh (cr,{) 

sinh (a,S) 

z sinh [a,,,(, - a)] sinh (a,t;) cash (a,,,/?) ____I____ ____- 
sinh (a,/?) 

+ EC a m cash (a,<) - sinh (a,,&] sinh [a,(z - fi)] -- 
a, 

= a,(z.5) ;<zsfl (29) 

If we expand the radial temperature derivative in 
equation (1) in a Fourier-Bessel series of the form 

with the CI, given by 

J,(%) = 0 (20) 

then it is easy to obtain the following solution to the 
vorticity equation 

6~ = 2 i Jr(a,r) sinh [a&--P)] @X,,(Z) + B,} 

WI=1 

+ 2 i J,(a,r)sinh (a,.4 {Qb(z) + C,) 
m=I 

Qii = Pm I ’ sinh (aA T,(C) dT: (22) 
0 

Qi = pm sinh [a, (l - 8)3 T,W d5 (23) 

(24) 

This solution contains three undetermined infinite 
sets of coefficients : B,, C, and D,. Ut~ljzation of this 
expression for w in equation (3) and solution of this 
second-order equation yield the following equation for 
the stream function 

where 

Z; y (27) 
( 1 
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The three sets of coefficients are now A,,,, E, and F,, 
and these constants are determined by requiring that 
the derivative boundary conditions for the stream 
function are satisfied on r = 1, z = 0 and z = /J. 
Utilization of a standard Fourier coefficient approach 
yields infinite systems ofequations for the three infinite 
sets of coefficients. Explicit forms of these equations 
and the solution method for the constants A,,,, E, and 
F, for a given temperature field are given elsewhere 
[49]. The above set of equations represents a 
straightforward method for calculating II/ for a known 
temperature field, and the equations are valid for both 
steady and unsteady temperature fields and for lin- 
earized and finite amplitude or nonlinear solutions to 
the temperature equation. 

SOLUTION FOR THE TEMPERATURE 
FIELD 

We now seek steady solutions to the energy equa- 
tion since there is reason to believe that steady rather 
than time periodic solutions exist near the critical 
point. Although this assertion has not yet been proved 
generally for surface tension-driven convection, Vidal 
and Acrivos [50] have carried out calculations which 
show that there is stationary rather than oscillatory 
motion at the onset of convection for the Marangoni 
problem in infinite layers. Since the nonlinearity in 
equation (14) is concentrated in the convective terms, it 
proves convenient to treat these terms as a non- 
homogeneous part of the equation for T and solve the 
steady form of the energy equation using the method of 
Green’s functions. The solution of the steady form of 
equation (14) subject to equations (lS)-(18) can thus 
be written as 

B 1 

T=j3 Sf 
0 0 

gsgdro dze 
0 0 

- gg$dr,dz, + T, (31) 
0 0 

where T, is the conduction solution 

and g(r, z 1 ro, zo) is the Green’s function solution of the 
following problem 

v2 g = _ 6(r-ro)6(z-zo) 
r 

NU 
T, = - 

l+Nu 

ag 
$=O, r=O 

g = 0, z = 8. 

2~0 r=] 
ar ’ 

ag Nu -- -g=o, z=o 
az B 
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The Green’s function g can be expressed as 

s(r, z/r,, zo) = Go (zlzo) 

m Jdwd J&v) Wlzo) 
-21 

n=l Ji (a,) 
(38) 

where 

Go (z,z ) = W[l + WzlB)l 11 - (zolB)l 
0 1 + Nu 

= bo (z, z,), 0 5 z < zo (39) 

Go(zlro) = bo(zo,z), zo<zSB (40) 

and, for n 2 1 

G, (+o) = 

[an/l cash (a,z) + Nu sinh (a.z)] 

x [cash (a$) sinh (a,zo) - sinh (an/l) cash (a.z,)] 

a.[a,8 cash (an/l) + Nu sinh (a&] 

= b,(z,z,), O~z<z, (41) 

G,(zlzo) = b,(zo,z), zo<zSB. (42) 

Since an explicit expression has been derived for $ in 
terms of the temperature field, equation (31) can be 
regarded as a nonlinear integral equation (strictly, a 
nonlinear integro-differential equation) for the tem- 
perature. It proves convenient to express the tempera- 
ture as 

T(r, z) = T,(z) + O(r, z) (43) 

where f3 is the temperature deviation from the con- 
duction solution. Thus, equation (31) becomes 

a$ 
9 r dro dzo 

o 

$g - 0 0 $g 1 dr,dz, w 0 0 
and this equation provides the vehicle for the calcu- 
lation of the temperature field for both linear and 
nonlinear problems. 

LINEAR MARANGONI PROBLEM 

We seek a solution to the Marangoni problem (Ra 
= 0) valid in the neighborhood of the critical point by 
postulating series for 8 and Ma of the form 

e = Eeo + 2 6, + (45) 

Ma = (Ma)o + .s(Ma), + . . . (46) 

where the perturbation parameter E is some convenient 
measure of the amplitude of the convective solution. A 
definition of E which is useful for the present in- 
vestigation is given later. Since $ is a linear functional 
of the temperature field, it can be easily shown that 

I(/ = e(Ma), tie 

+ s* [(Ma)0 $1 + (Ma), $,I 

(37) + . . . (47) 
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where $. and 11/, are stream functions for the tempera- 
ture fields B, and @,, respectively, with Ma = 1. 
Substitution of equations (45) and (47) into equation 
(44) yields the following two equations for f$, and 8, 

TX, (0) a2Nu D 

(M~)o 
= -!!---- c B,, T,,(O) + h,, 

1iNU p=, 
n2l (58) 

h = of41 T 

n (~o)oJ.+h (59) 

___ = - -_-- (48) 

8 1 
+P .fr [ ati, aeo a$oae, dr dz 

o, gc?rz-- 0 0 ‘0 1 dz, c?r, O O’ 

(49) 

It is convenient at this point to introduce the 
following series expansions for B. and 0, 

8, = T,,(z) - f ~~~(~~~) (50) 
n=i m 

0i = T,,(t) - f T”‘IZ)J,(a,r). (51) 
m=l a, 

Utilization of equations (38) and (50) and the derived 
expression for the stream function in equation (48) 
produces the following system of equations 

Too = 0 (52) 

T,,(O) azNu ?i 

(Ma)0 
= _!!-- c B,, T,,(O), n>= 1 

l+Nu,=, 
(53) 

where the coefficient matrix B,, depends only on p and 
is defined elsewhere [49]. This equation represents an 
infinite system of linear, homogeneous algebraic equa- 
tions and is thus an eigenvalue problem for the 
eigenvalues l/(Ma)o and the corresponding eigenvec- 
tors T,,(O). 

If c is defined by the expression 

e2 = ; [TJO)]’ 
m=O 

(54) 

the normalization condition for the eigenvector T,,(O) 
takes the following form 

5 cTmoco)lz = 1. (55) 
m=O 

Also, if (Ma), # 0 and if second- and higher-order 
terms in E are neglected, then E is given by 

Ma-(Ma), 

’ = (Ma), . 
(54) 

By performing the same operations on equation (49) 
as were performed on equation (48), we can derive the 
following equations for the T,,(O) 

To,(O) = (Ma)0 B 

a*, aoo _.... _- - _- azo i;ro dro dzo (57) 1 

wfo 80, --__- 
azo are 1 dr, dz,. (61) 

Since numerical calculations show that l/(Ma)o is an 
algebraically simple eigenvalue of equation (53), then 
equation (58) will have a solution [5l] if, and only if, 
the single solution, T,*(O), of the adjoint homogeneous 
problem 

is orthogonal to the nonhomogeneous vector in equa- 
tion (58) 

i h, T,*,(O) = 0. (63) 
II=1 

From this result, we derive the following expression 
for (Ma), 

{Ma), = - 
IS=, 

$, Co(O)L . 

(64) 

Finally, we develop an expression for the heat transfer 
enhancement, E, which is the ratio of the heat transfer 
rate from the top surface when cellular convection is 
present to the heat transfer rate when only the 
conductive mode is operative 

E = 1 - E~(~+Nu)T~~(O) + . . . . (65) 

FORMULATION OF LINEAR RAYLEIGH 
PROBLEM 

For the Rayleigh problem (Mu = 0), we again are 
interested in the construction of steady convective 
solutions. In this case, however, this restriction is 
totally justified since the possibility of time periodic 
solutions near the critical point is ruied out owing to 
the self-adjointness of the linear system for this type of 
problem [24, 381. For this problem, we utilize the 
series expansion given by equation (45) for 0 and the 
following perturbation expansion for Ra near the 
critical point 

Ra = (Ru)~ + z{Ra), + E’ (Ra), +. . . . 

We also have 

WI 
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+ e2 [(Re)o $1 + @a), $01 + . . . (67) 

Here, Jlo and $i are solutions to the stream function 
equation corresponding to temperature fields B. and 
or, respectively, with Ra = 1. 

If we utilize the above perturbation series and 
proceed as in the derivation for the Marangoni 
problem, we derive the following results for the T,,(z) 

Too = 0 (68) 

ai Nu 
b,= -- 

l+Nu 

T,,(z) s B 

- = P,(z) + b, 
(Wo 

wlr) 
0 

The quantity P,(z) is defined elsewhere [49] and 

@AZ/~) = 
I 

PG*(zIzo)Y:(zoIC)dzo (71) 
0 

where Y: is the value of Y, with Ra = 1. In this form, 
equation (70) can be regarded as a linear, non- 
homogeneous Fredholm integral equation of the 
second kind for T,,(z). We shall develop a solution 
for each equation in the infinite system represented 
by equation (70) in terms of the eigenvalues and eigen- 
functions of the linear integral operator K 

KT,, = p%(zIT) T,o(Ud5. 
I 

(72) 
0 

This task is complicated somewhat by the fact that it is 
not possible to establish a symmetry property for the 
kernel @.(z 15). 

EIGENVALUES AND EIGENFUNCTIONS 
OF THE LINEAR INTEGRAL OPERATOR 

The eigenvalue problem for the linear integral 
operator can be posed as 

KT,, = lnTno (73) 

and this eigenvalue problem can be transformed to the 
solution of the sixth-order equation with D = dfdz 

T 
(0’ - ai)” T,, = $$ (74) 

subject to the following boundary conditions 

dT,, Nu 
-=-_T 

dz B 
no, z=O 

d’T,o - = ai T,,, z=O 
dz’ 

d4 T,o -= 
dz4 

atTmo, z=O 

(75) 

(77) 

d=T,o T,, = 0, - = 
dz= 

o d4T,,o 
----0, z=/3. 

’ dz4 
(78) 

Before we derive expressions for the eigenvalues %, 
and the eigenfunctions T,, for this problem, it is 
necessary to state two theorems which establish the 
properties of the A,. 

Theorem I. The eigenvalues i., of the linear operator 
K are real. 

Theorem II. The eigenvalues i,, obey the 
inequalities 

O>i.,> -1. 
B4a.6 

(79) 

The proofs of these theorems and further properties of 
the linear integral operator are considered elsewhere 

1491. 
With the help of theorems I and II, it can be shown 

that the infinite set of eigenvalues of K, the I.:, are the 
solutions of the following equation 

- (Tn-af)1’2 cot [(7.-ai)1’2 /?I 

(81) 

“= i 
” 

= (a,4+r,a,Z+.rI)“’ + (a.‘+&.) 

2 2 1 (82) 
k = (af+7,a,2+7,2)"2 (a:+&) l/2 

n 

[ 2 -2 ’ 1 (83) 

The eigenfunction corresponding to the eigenvalue i$’ 
can be expressed as follows: 

Tro(z) = sin [(T: - at)lj2 (z --/?)I 

+ E,, sinh bT(z - /3)] cos [k,“(z - /3)] 

+ F,, sin [k:(z -fi)] cash b;(z - j?)]. (84) 

Expressions for the coefficients E,, and F,, are given 
elsewhere [49]. 

SOLUTION OF LINEAR RAYLEIGH PROBLEM 

We proceed to solve the linear Fredholm integral 
equation in the standard manner [Sl], using the 
eigenfunctions and eigenvalues of the linear operator 
to form expansions for the individual terms of the 
integral equation. We can form an expansion for T,,(z) 
in terms of the eigenfunctions of the linear operator 

T,,(z) = : K:m T:o(z) (85) 
m=, 

and utilization of this expression in equation (70) leads 
to the result 

YO m m 
Rnm - = b, A,” Kf,,, + c 1 
WI, 1=1q=1 

x K: Qnmyt nr1, mll. (86) 

Consequently, in the process of solving the non- 
homogeneous integral equation for TnO, we have 
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Table 1. (Mak, for first bifurcation point 

NU R/L=0.5 R/L = 1 R/L = 2 R/L = 4 R/L = 8 R/L = 20 

0.01 63517.4 16604.5 8548.1 8330.8 8148.5 8092.9 

0.10 6993.0 1851.9 970.9 952.4 924.8 925.9 

1.00 1417.4 412.0 250.0 241.3 234.4 232.6 

10.00 1572.3 637.0 505.1 465.1 457.6 456.6 

100.00 8612.9 4315.2 3625.3 3404.9 3352.1 3339.5 

.~ 

generated an infinite system of linear, homogeneous 
algebraic equations, and, thus, we have an eigenvalue 
problem for the eigenvalues l/(Ra)o and the cor- 
responding eigenvectors Kf,,,. The Qnmy depend only 
on /I and are defined elsewhere [49]. 

As above, we can derive a normalization condition 
for the eigenvector 

Also, since it is well known that (Ra), = 0 for this 
problem [24], we can calculate E from the expression 

(88) 

if third- and higher-order terms in E are neglected. In 
addition, it can be shown that the T,,(z) are given by 
the following equations 

Toi = B(Rc)o 

wo a00 ---_- 
aZo are 1 

dr, dz, (89) 

m 

K' 
2 = b,l.;Kf, + f f K& Qmntg 
(R4o 1=1 q=l 

+ Gm n?l, mz1. (91) 

The C,,, which are defined elsewhere [49], represent 
the nonhomogeneous terms of the infinite system of 
linear algebraic equations for the Kf,. It is convenient 
to use the theory of differential operators to derive an 
expression for (Ra),. We anticipate a result of a later 
paper and write 

B(l+Nu) ’ ’ 
z------ SS[ T 

Nu o. O1 1 
(92) 

where To, is given by equation (89) and Y,, is a 
particular solution of equation (91). 

The integral equation method used to analyze the 
Rayleigh problem is similar in some respects to a 
method used by Kirchgassner and Sorger [52] in a 
branching analysis of the Taylor problem. More 
details of the mathematical methods used in this paper 
are provided elsewhere [49, 531. 

T,, = c K,l, Co 
Ill=1 

Table 2. (Ra)o at first bifurcation point 

NU R/L=0.5 R/L=1 R/L=2 R/L=4 R/L=8 

0.01 1035524.2 157389.2 71959.1 70250.3 68195.9 

0.10 112849.8 17224.4 7991.5 7802.7 7560.5 

1.00 20630.2 3256.3 1671.7 1599.0 1555.9 

10.00 11609.3 2013.2 1230.3 1113.7 1096.5 

100.00 10844.2 1958.4 1247.2 1121.9 1105.4 
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Table 3. (Ma), at first bifurcation point for Nu = 100 Table 4. (Ra), at first bifurcation point for Nu = 100 

R/L (MaI 0 

1.00 4315.2 

1.33 3717.4 

1.43 3665.0 

1.75 3686.9 

2.00 3625.3 

2.25 3512.9 

2.61 3458.3 

3.79 3402.7 

4.00 3404.9 

R/L (WO (W0 B-4 

1.00 1958.4 1.9584 x 103 

1.33 1288.7 4.0729 x 103 

1.43 1244.7 5.1758 x 103 

1.75 1218.4 1.1427 x lo4 

2.00 1247.2 1.9416 104 x 

2.25 1213.5 3.1100 x 104 

2.61 1152.5 5.3810 x 104 

3.79 1124.7 2.3255 lo5 x 

4.00 1121.8 2.8718 lo5 x 

--_ 

RESULTS AND DISCUSSION 

Values of the critical Marangoni and Rayleigh 
numbers at the first bifurcation point, (Ma), and (Ra),, 
are presented as functions of Nu and /I in Tables 1 and 
2, respectively. The simplicity of the eigenvalues im- 
plies that they are bifurcation or branch points for the 
system [51]. At a given value of Nu, there is a general 
decrease of both (Ma), and (Ra), with increasing 
aspect ratio, R/L, and as much as nearly an eight-fold 
decrease was observed for the cases considered here. 
This effect is of course expected since the lateral wall 
can severely inhibit convective motion and thus has a 
stabilizing effect. The effect of the side wall diminishes 
with increasing Nusselt number for both Marangoni 
and Rayleigh problems. These results appear to be the 
first comprehensive computations for the free surface 
geometry considered here. Bentwich [54] has pre- 
sented some very limited results for this problem. 
However, some severe approximations are introduced 
into his analysis, and the few results he presents are not 
generally in agreement with those presented here. 
Furthermore, his predicted dependence of (Ra), on 
R/L is not physically realistic. 

lem considered in this investigation. It is evident from 
Tables 3 and 4 that local maxima are indeed observed 
when a finer distribution of R/L is studied. 

Jennings and Sani [40] have stated that the critical 
Rayleigh number should be a nonincreasing function 
of the size of a bounded domain for conducting side 
walls. This statement is not true for insulating side 
walls, as is evident from the results of this study 
presented in Table 4 and from the insulated wall results 
of Charlson and Sani [38] which are given in Table 5. 
However, in a later paper, we use the theory of 
differential operators to show that 

Table 5. (Ro), for Charlson and Sani [38] 

Charlson and Sani [38] observed local maxima in 
their plot of the critical Rayleigh number versus aspect 
ratio for buoyancy-driven convection in a rigid-wall 
cylinder with an insulating side wall. Consequently, 
additional critical Marangoni numbers and critical 
Rayleigh numbers were computed at intermediate 
values of R/L at Nu = 100 to ascertain whether the 
same phenomenon occurred for the free surface prob- 

R/L MO cm0 6-4 

1.25 1920.83 4.6895 x 103 

1.50 1896.13 9.5992 x 103 

1.60 1921.99 1.2596 x 104 

1.75 1949.86 1.8287 x lo4 

2.00 1862.27 2.9796 x lo4 

2.50 1780.81 6.9562 x lo4 

2.75 1795.17 1.0267 x 105 

3.00 1778.25 1.4403 x 105 

3.50 1747.24 2.6219 lo5 x 

3.75 1752.90 3.4664 10' x 

4.00 1747.95 4.4747 x 105 

4.50 1732.93 7.1060 lo5 x 

5.00 1733.78 1.0836 x 106 

5.50 1725.30 1.5787 106 x 

6.00 1725.98 2.2368 lo6 x 

6.50 1720.72 3.0716 IO6 x 

7.00 1721.36 4.1329 x 106 

8.00 1718.39 7.0385 x 106 
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Table 6. Comparison of bounded geometries with infinite layers 

ml (Ma) o for R/L = 20 Pa) o for infinite layer 

0.01 8092.9 

0.10 925.9 

1.00 232.6 

10.00 456.6 

100.00 3339.5 

(93) 

for the axisymmetric Rayleigh problems studied by 
Charlson and Sani and by the present investigators. It 
is evident from Tables 4 and 5 that the reported 
eigenvalues of both investigations obey this inequality. 

At a given value of R/L (orb), the critical Marangoni 
number becomes large as Nu + 0 and as Nu + cc and 
achieves a minimum value in the vicinity of Nu = 1. As 
Nu + 00, the surface temperature becomes effectively 
uniform, and large temperature differences are needed 
to promote convective motion. As Nu + 0, a uniform 
temperature exists in the liquid layer in the conductive 
state, and, again, a large temperature difference is 
necessary for cellular convection. We note here that 
the critical Marangoni number defined in this study, 
(Ma),, is related to the dimensionless group which has 

been used [14] in infinite layer theory, (Ma),, by the 
following expression 

M-J), = T(Ma),. (94) 

The difference arises because we have defined the 
Marangoni number using the temperature difference 
between the bottom surface of the liquid layer and the 
gas phase, whereas the temperature difference across 
the liquid layer in the conductive state is used in 
infinite layer studies. In the infinite layer analyses, a 

finite value of (Ma), at Nu = 0 and a monotonic 

increase of (Mu)~ with increasing Nusselt number are 

Table 7. Comparison of bounded geometries with infinite 
layers 

wavelength (average value for R/L = 20) 
wavelength lmfinite layer) 

0.01 1.0594 

0.10 0.9931 

1.00 1.0213 

10.00 1.0273 

100.00 0.9971 

8079.1 

917.7 

232.3 

454.8 

3336.9 

computed [14]. However, these results are somewhat 
artificial since a nonzero temperature difference can be 
maintained across the liquid layer at Nu = 0 in the 
conductive state only if an infinitely large value of 7 - 
To is applied. Although either definition of the Mar- 
angoni number can of course be utilized, we believe 
that the present definition is more useful in arriving at 
a physical interpretation of the results. 

A comparison of the infinite layer results of Nield 
[14] for (Mu),, with the results of this study at R/L= 
20 is given in Table 6. The difference between the two 
values is less than one per cent in all cases, and the 
values for R/L = 20 are higher than the infinite layer 
results as expected. Consequently, an aspect ratio of 
20, or even 8, is a reasonable approximation to an 
infinite layer for the purpose of calculating the critical 

Table 8. Nusselt number dependence of (Ra), for infinite 
layers 

NU @a) 0 

0.01 67708.4 

0.10 7505.9 

0.20 4168.7 

0.50 2182.3 

1.00 1541.2 

2.00 1246.9 

5.00 1110.6 

10.00 1088.4 

20.00 1088.1 

50.00 1093.6 

100.00 1096.8 

1000.00 1100.2 

lOlO 1100.7 
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FIG. 2. Streamlines e0 at first bifurcation point for R/L = 1 and Nu = 1 for Ra = 0. 

Marangoni number. Really significant increases in 
(Ma), begin to occur when R/L is less than 2. We can 
also see from Table 7 that there is good agreement 
between the wavelength from infinite layer theory and 
an average wavelength (the ratio of the width of a cell 
to the depth of the fluid layer) computed for a bounded 
region at R/L = 20. Similar results are obtained for the 
Rayleigh problem. 

At a fixed aspect ratio, there is a general decrease of 
(Ra), with increasing Nu. As in the Marangoni 
problem, large temperature differences are needed to 
promote convection as Nu + 0. However, large 
temperature gradients are not necessary as Nu 4 clc 
since buoyancy-driven convection can of course pro- 
ceed even if the temperature of the free surface is 
uniform. It should be noted that there is not a strict 
decrease of (Ru)~ with increasing Nu at the three 
highest aspect ratios, RJL = 2,4, and 8, there being a 
minimum in the (Ra), vs Nu curve in the vicinity of Nu 

= 10. We further note that the critical Rayleigh 
number defined here, (Ra),, is related to the one used 

[14] in infinite layer theory, (Ra),, by 

Wo = T (R~I)~. 

The infinite layer analysis [14] shows that (Ru)~ 
increases monotonically with increasing Nu, and we 
have used the theory of differential operators in a later 
paper to show that 

for the bounded, axisymmetric flow problem we are 
considering here. However, the same analysis shows 
that 8(Ra),/8Nu need not have the same sign for all 
Nu, and a minimum in the (Ralo vs Nu curve cannot be 
excluded. Furthermore, as is evident from Table 8, a 
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FIG. 3. Streamlines I& at first bifurcation point for R/L = 4 and Nu = 1 for Ra = 0 
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FIG. 7. Isotherms B0 at first bifurcation point for R/L = 4 and Nu = 1 for Ra = 0 

minimum exists also in the (Ra), vs Nu curve near Nu 
= 20 for the eigenvalues of infinite layer theory. 

Streamline plots for Jlo at the first bifurcation point 
for Ra = 0, with aspect ratios of 1,4, and 8 and Nu = 1 
are presented in Figs. 2-4. We note that the roll cells 
near the lateral wall are generally weaker, in the sense 
that convection dies down, than roll cells near the 
center of the cylinder because of the damping effect of 
the lateral wall. Figures 3,s and 6 show the streamlines 
for R/L = 4 and Nu = 0.01, 1, and 100. It is evident 
that the effect of increasing the Nusselt number is to 
increase the number of roll cells for a fixed aspect ratio. 
It will be shown below that this behavior is in evidence 
for the first bifurcation point for all cases studied in this 
investigation. Figure 7 shows a typical isotherm plot 
for the deviation temperature field B. for R/L = 4 and 
Nu = 1. It is again evident that the strength of the 
convection decreases as the wall is approached. In 
addition, the change of the sign of fl,, appears to occur 
reasonably close to the center of a roll cell. Similar 
results are obtained for Ma = 0. 
The plots of tjo and B,, of course do not give the 

actual direction or strength of the flow for a roll cell. 
However, this information can be obtained in the 

neighborhood of the critical point if computed values 
of (Ma), or (Ra), are used to determine single term 
estimates of $ and 0. Values of (Ma), are presented in 
Table 9 for some of the cases examined in this 
investigation. Since (Ma), > 0, there exist both 
supercritical and subcritical steady convective sol- 
ution branches in the neighborhood of the bifurcation 
point. The stability of these convective branches in the 
vicinity of the critical point will be considered later. 
The possibility of subcritical convective motions for 
surface tension-driven convection has been suggested 
by the infinite layer analysis of Davis [%I. The 
direction of flow on the supercritical side of the 
bifurcation point at the center of the cylinder is 
indicated in Table 9. The flow in all of the cases studied 
is upward at the center of the fluid layer. Liang, Vidal 
and Acrivos [33] experimentally studied free surface 
convection in a circular cylinder and reported that the 
stable flow pattern was an axisymmetric flow field with 
upward motion near the center of the cell. It is not 
known how significant surface tension gradients were 
in producing this flow. 

Values of (Ra), are presented in Table 10 for some of 
the cases studied here. Since (Ra), = 0, there is no 

Table 9. Values of (Ma), and direction of flow at center of cylinder 

NU 

0.01 

1.00 

100.00 

R/L = 0.5 R/L = 1 R/L = 2 R/L = 4 R/L = 8 

0.29156x10' 0.37385~10~ 0.89289x105 0.28545~10~ 0.69800x104 

(UP) (UP) (UP) (UP) (UP) 

0.14749x104 0.23654x103 0.85902x102 0.25073x102 0.65437x101 

(UP) (UP) (UP) (UP) UJP) 

0.63568~10~ 0.30117x105 0.14353x105 0.38390x104 0.87712~10~ 

(UP) (UP) (UP) (UP) (UP) 
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Table 10. Values of (Ra), 

NU R/L=O. 5 R/L=1 R/L=2 R/L=4 R/L=8 

0.01 0.78556~101~ 0.45397x109 0.12006x10g 0.46857~10~ 0.50900x107 

1.00 0.45882~10~ 0.27827~10~ 0.804t33x103 0.15436~10~ 0.31296x10* 

100.00 0.43040x104 0.30927x103 0.10118x103 0.12522~10~ 0.25265~10~ 

Table 11. Critical Marangoni numbers at first four bifurcation points 

Nu = 0.01 Nu = 1.00 NU = 100.00 

R/L 2 3 4 2 3 4 2 3 4 
i i i i i i i i i 

20 1.00411 1.01397 1.02161 1.00469 1.01036 1.02236 1.00218 1.00621 1.01117 

8 1.03139 1.06467 1.17003 1.01898 1.07616 1.11320 1.01412 1.03836 1.06539 

4 1.08548 1.38563 1.63311 1.06201 1.23432 1.58988 1.04301 1.14437 1.28180 

2 1.53633 2.78888 4.60466 1.33693 2.25783 3.58335 1.16942 1.37876 1.74246 

1 2.83316 5.66764 9.42916 2.58063 4.96536 8.11597 1.64552 2.35250 3.09269 

0.5 2.96303 5.92876 9.90071 2.81524 5.51827 9.11375 1.76126 2.58157 3.47210 

f, $, and 1 signify the ratios of the values of (Majo at the second, third, and fourth 

bifurcation points to (Ma)0 at the first. 

Table 12. Critical Rayleigh numbers at first four bifurcation points 

Nu=O.Ol Nu=l.OO Nu=lOO.OO 

R/L 2 3 4 2 3 4 2 3 4 

i i i i i i i i i 

8 1.03379 1.06350 1.14210 1.01955 1.07409 1.12547 1.01877 1.06415 1.10390 

4 1.06309 1.33467 1.69353 1.07316 1.24327 1.65883 1.10081 1.23916 1.41930 

2 1.50255 3.01139 6.03103 1.36023 2.62615 5.19397 1.17579 1.98302 3.72771 

1 3.89091 7.66'258 10.95412 3.76609 7.63448 10.65388 3.35755 7.82878 9.89159 

0.5 2.25637 6.31538 6.69201 2.26798 6.32682 6.69173 2.36894 6.27356 7.02209 

2 
it+, and t signify the ratios of values of (Ra)O at the second, third, and fourth 

bifurcation points to (Ra), at the first. 
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Table 13. Roll cell number at first three bifurcation points (Ra = 0) 

NU = 0.01 Nu = 1.00 Nu = 100.00 

R/L 1 2 3 1 2 3 1 2 3 

20 12 13 12 14 15 13 19 19. 18 

8 5 4 6 5 5 7 8 7 6 

4 2 3 4 3 3 4 3 4 3 

2 1 2 3 1 2 3 2 1 1 

1 1 2 3 1 2 3 1 2 1 

0.5 1 2 3 1 2 3 1 2 1 

__~__~___ 
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subcritical convection and two supercritical flows are 

possible in the linear region, one with upflow and the 
other with downflow at the center of the cylinder. 

Critical Marangoni and Rayleigh numbers for the 
first four bifurcation points are presented in Tables 11 
and 12, and the numbers of roll cells for the linear flow 
fields for the first three bifurcation points are reported 
in Tables 13 and 14. It is evident that the eigenvalues 
(critical Marangoni or Rayleigh numbers) crowd 
together as R/L is increased. This spectral crowding is 
so severe that there is only approximately a two per- 
cent difference between the first and fourth eigenvalues 
when R/L = 20 for the Marangoni problem. From 
Tables 13 and 14, it is evident, as noted earlier, that the 
number of roll cells for the first bifurcation point 
increases with increasing Nusselt number for fixed 
aspect ratio. Furthermore, the number of radial roll 
cells increases with increasing aspect ratio at a fixed 
value of Nu for the first bifurcation point. It is also 
evident that there is no general pattern in the number 
of roll cells at the first three bifurcation points for given 
values of /I and Nu for both surface tension and 
buoyancy problems. 

For the first bifurcation point for the Marangoni 
problem, only radial rolls appear and there is no 
vertical stacking of the cells. Thus, the number of roll 

:lls alone gives a representative picture of the nature 
of the cellular motion, with the possible exception of 
the existence of small corner eddies. However, for 
higher bifurcation points, vertical stacks of radial rolls 
are observed, and the roll cell number reported in 
Table 13 represents the situation near the midpoint of 
the fluid layer and does not necessarily present a clear 
picture of the cellular pattern. An example of the 
vertical stacking of radial rolls at higher bifurcation 
points for surface tension-driven convection is shown 
in Fig. 8. For buoyancy-driven convection, there is no 
vertical stacking of roll cells for the higher bifurcation 
points, and the number of radial rolls reported in Table 
14 thus gives a representative picture of the convective 
flow pattern. 

It is evident from the above results that the solution 
branches for successive bifurcation points are closely 
bunched at high aspect ratios, and significantly dif- 
ferent convective patterns may be associated with 
these branches. Thus, it appears preferable to study 

Table 14. Roll cell number at first three bifurcation points (Ma = 0) 

Nu=O.Ol Nu=l.OO Nu=lOO.OO 

R/L 1 2 3 1 2 3 1 2 3 

8 5 6 4 6 6 7 7 7 6 

4 2 3 4 3 3 4 3 4 2 

2 1 2 3 1 2 3 2 2 3 

1 1 2 1 1 2 1 1 2 1 

0.5 1 1 1 1 1 1 1 1 2 

.___ .~ ~.___~~~__~ ~~ 
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Ftc;. 8. Streamlines $,, at fifth bifurcation point for R/L = 2 and Nu = 100 for Ra = 0 

cellular convection in geometries with small aspect 
ratios (less than about 4) to avoid the possibility that 
more than one solution branch may be observed owing 
to the inevitable thermal fluctuations present in physi- 
cal systems. 

Finally, although the present analyses of the Mar- 
angoni and Rayleigh problems have been carried out 
at the infinite Prandtl number limit, the linear theory 

results are of course valid for all Prandtl numbers. The 
Prandtl number limitation only affects the higher 
order results of the theory such as (Ma),, (Ra),, and the 
nonlinear solutions which will be presented later. 
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determiner les nombres critiques de Marangoni et de Rayleigh, la structure du mouvement convectif, la 
direction de I’tcoulement et la nature des bifurcations. L’analyse est bade sur une methode particuliere de 
traitement des problemes de convection, par utilisation des fonctions de Green pour rtduire le probleme a la 
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KONVEKTION AN EINER FREIEN OBERFLACHE IN EINEM 
ZY LINDRISCH BEGRENZTEN GEBIET 

Zusammenfassung-Es wurde die durch ObertILhenspannung und Auftriebskrafte verursachte Konvek- 
tion in einem zylindrisch begrenzten Gebiet mit freier OberfIkhe fur eine Reihe von Seitenverhaltnissen und 
Nusseh-Zahlen untersucht. Die lineare Theorie und einige Gesichtspunkte der nichtlinearen Analysis 
werden dazu benutzt, die kritischen Marangoni- und Rayleigh-Zahlen, die Struktur der konvektiven 
Bewegung, die Stromungsrichtung und den Vorgang der gabelartigen Verzweigung zu bestimmen. Die 
Analysis stiitzt sich auf eine bei der Behandlung von Problemen der freien Konvektion etwas untibliche 
Methode, namlich die Anwendung der Green&hen Funktionen zur Reduzierung des Problems auf die 

Losung einer Integralgleichung. 

CBO6OAHAR KOHBEKHMR OT flOBEPXHOCTM B OFPAHMtiEHHOM 
HWJIHH~PM~ECKOM HPOCTPAHCTBE 

AaaoTaunn - kiCCJl.tQ’CTCfl KOHBCKUWR. Bb13bIBi+CMaR CHJliiMH “OsCpXHOCTHOrO HBTRMCH&iII H nOIll.- 

CMHbIMH CWWMA, B OrPaHHWHHOM UH_WHItpWCCKOM “POCTpaHCTBC U,,,, pa3,,W,Hb,X OTHOUICHHIlX 

CTOPOH W 3HkiqCHWRX ‘iHCJla HyCCCnbTa. &Wi On~RCJlCHH8 KpHTHWCKk,X ‘IHCCJI hhpaHrOHH I( kJiC% 

CTpyKTypbI KOHBCKTHBHOrO IlOTOKa, HanpaBJICHkla TCWHHR H np&ipOLIbl 6Ht,,,‘pKZU,HH flpHMeHRCTCZ4 

JIHHCi?Hbtii aHWH3 W HeKOTOpbIC aCnCKTb1 HWlHHCfiHOrO a”a.“H3a. khOJIb3yCTCSl HCCKO,,bKO MOIW,,H- 

UHPOBaHHblii MeTOL, ~LUCHBR 3Waq CBO6OnHOii KOHBCKUHW. il TaKXZ? (t))‘HKUHR rpHHa ,l,,R CBQJCHUR 

3iiL,ii911 K HHTCrpanbHOMy ypaBHCHWO. 


